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Motivations

Movie post-production

(CC) Blender Foundation | Tears of
Steel, see mango.blender.org



Motivations

Video understanding

-

Playing for Data [Richter 2016]



ROTOSCOPING



Rotoscoping

—
Frames of video sequence
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Rotoscoping =

—
Frames of video sequence

Keyframe: direct segmentation & manipulation

Remaining frame
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RELATED WORK



Related Work: Interactive Segmentation

JumpCut: Non-Successive Mask Transfer
and Interpolation for Video Cutout [Fan 2015]

Roto++: Accelerating Professional
Rotoscoping using Shape Manifolds [Li 2016]



Related Work: Computer Vision

Test Network
Fine-tuned on frame 1 of test sequence

One-Shot Video Object Segmentation
[Caelles 2017]

Partially annotated input frame Segmented output frame
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Bilateral Space Video Segmentation A Neeeetl)e: e
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(a) Lifting (b) Splatting : (c) Graph cut (d) Slicing

‘* - > Video Segmentation
via Object Flow [Tsai 2016]

(a) frame t — 1 (b) frame ¢ (c) initial optical flow (d) updated optical flow




Related Work: Crowdsourcing

Open Surfaces [Bell 2013]



Related Work Vldeo Annotation

B~ with Human Annotatlons [Yuen 2009]
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Annotate every object, even stationary and obstructed objects, for the entire video @ Instructions + New Object
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Efficiently Scaling Up Crowdsourced
Video Annotation [Vondrick 2012] ==
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Crowdsourcing
Higher-Quality Segmentation
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Rotoscoping



Rotoscoping



Rotoscoping
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Rotoscoping
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SEGMENTATION
ENSEMBLE



Overview

Individual
Segmenters

Segmentation Ensemble
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Need for Replication



Need for Replication




Need for Replication




Need for Replication
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Need for Replication




Need for Replication




Segmentation Ensemble

o Negative polygons
o Clustered merging
o Reviewer weighting



Negative Space




Negative Space




Negative Space




Instructions: carefully trace the contour of each element mentioned in the rotoscoping instructions. Assign the correct class to each polygon.

# Draw (D) 4 Adjust (A) History ~ Actions v ® Class: Boatv % Drag







Merging Segmentations

o Clustering by overlap + type of polygon

o Weighted combination












Weights as bonuses

Total task reward:

R ="

l



Weights as bonuses

Total task reward:
Ri =TI+ /31'

Weights and bonuses:

Wi =1+ﬁi



PROPAGATION
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Rotoscoping

Propagation
Ensemble
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Overview

Final
Segmentation

Multiple algorithms Scribblers Propagation Ensemble



Click on the images

u below to see
cribble Tas
more or less of

the mask.

Click on the circles
below to change
the marker size.
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Different Brush Scenarios

1. Corrective Fixing
(inverting brushes)

2. Penalty-based Weighting
(weighting brushes)

3. Segmentation Refinement
(2 brushes)



Corrective Fixing




Penalty-based Weighting




Segmentation Refinement
















Example




Example




EVALUATION






Segmentation Ensemble

* Do workers use our negative polygons?
v’ Yes. Extensively.

Distribution of annotation types

Ratio
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Segmentation Ensemble

* Does our strategy produce higher quality?
v/ Yes. Notably for the boundaries.

Oracle Automatic
Metrics Clu/Mean Best Clu/Mean SDF  Worst
J 1 0.917 0.914 0.903 0.875 0.842
F7 0.952 0.939 0.928 0.880 0.879

T 0.380 0.372 0.359 0.350 0.483




Segmentation Ensemble

 How does replication impact the quality?
v’ Positively!
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Segmentation Ensemble

 How does replication impact the quality?
v’ Positively!

—>— Mean+CLU

Mean
Mean+CLU+W
M




Segmentation Ensemble

 How does replication impact the quality?
v’ Positively!
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Propagation Ensemble

* Do the scribble improve quality?
v’ Yes, consistently.

 Are they efficient?
X Not for coarse samplings.



Propagation Ensemble
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Propagation Ensemble
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Propagation Ensemble

 \Which scribble scenario is most effective?
As penalty weighting.

» Corrective fixing:
— Unstable (see paper).
— Single candidates cannot be improved.
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Crowd workers can create
(much) higher quality segmentation!

Tools and data will be made available online:
http://crowdensembles.csail.mit.edu
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Tools and data will be made available online:
http://crowdensembles.csail.mit.edu



Are the metrics meaningful?

Metric
Method J F T |14
LDOF 0.760 0.749 0.250 0.204
DF+SVM 0.764 0.782 0.250 0.192

DF+SVM+Att 0.822 0.823 0.317 0.198

Table 7. Comparisons between the scores W evaluated by crowd workers
and the J, F, and T metrics, as in Table 1. All values are averages over all
sequences of the DAVIS dataset. The score W is defined as the average
number of positive evaluations for a frame segmentation.




